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We compute the tunneling conductance of graphene as measured by a scanning tunneling microscope �STM�
with a normal/superconducting tip. We demonstrate that for undoped graphene with zero Fermi energy, the first
derivative of the tunneling conductance with respect to the applied voltage is proportional to the density of
states of the STM tip. We also show that the shape of the STM spectra for graphene doped with impurities
depends qualitatively on the position of the impurity atom in the graphene matrix and relate this unconven-
tional phenomenon to the pseudospin symmetry of the Dirac quasiparticles in graphene. We suggest experi-
ments to test our theory.
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I. INTRODUCTION

The low-energy quasiparticles of graphene around K and
K� Fermi points have Dirac-type properties.1 In particular,
the pseudospin of these quasiparticles around K�K�� points
along �opposite to� their direction of motion. The presence of
such Dirac-type quasiparticles with definite helicity leads to
a number of unusual electronic properties in graphene.2–5

Recently, the influence of such Dirac quasiparticles on prop-
erties of graphene doped with magnetic/nonmagnetic
impurities have attracted theoretical and experimental
attention.6–11 However, the recent experimental observation
of dependence of STM tunneling spectra on the position of
the impurity in the graphene matrix in Ref. 9 lacks a theo-
retical explanation even at a qualitative level.10

Scanning tunneling microscopes �STM� are extremely
useful probes for studying properties of two or quasi-two-
dimensional materials.11,12 Studying electronic properties of
a sample with STM typically involves measurement of the
tunneling conductance G�V� for a given applied voltage V.
The tunneling conductances measured in these experiments
have also been studied theoretically for conventional metallic
systems and are known to exhibit Fano resonances at zero-
bias voltage in the presence of impurities.13,14 The applica-
tion and utility of this experimental technique, with super-
conducting STM tips, have also been discussed in the
literature for conventional systems.15 However, tunneling
spectroscopy of graphene using superconducting STM tips
remains to be studied both experimentally and theoretically.

In this work, we compute the STM response of doped
graphene and demonstrate that the STM spectra has several
unconventional features. For undoped graphene with Fermi
energy EF=0, the derivative of the STM tunneling conduc-
tance �G� with respect to the applied voltage �dG /dV� re-
flects the density of states �DOS� of the STM tip ��t�, i.e.,
dG /dV�+�−��t for V� �� �0. By tuning EF, one can inter-
polate between this unconventional �t��dG /dV and the
conventional �t�G �seen for EF�eV� behaviors. Further,
we find that for superconducting STM tips with energy gap
�0, G�dG /dV� displays a cusp �discontinuity� at eV=−EF
−�0 as a signature of the Dirac point which should be ex-

perimentally observable in graphene with small EF where the
regime eV�EF can be easily accessed. For impurity-doped
graphene with large EF, experiments in Ref. 9 have seen that
the tunneling conductance, as measured by a metallic STM
tip, depends qualitatively on the position of the impurity in
the graphene matrix. For impurity atoms atop the hexagon
center, the zero-bias tunneling conductance shows a peak; for
those atop a graphene site, it shows a dip. We provide a
qualitative theoretical explanation of this phenomenon and
show that this unconventional behavior is a consequence of
conservation/breaking of pseudospin symmetry of the Dirac
quasiparticles by the impurity. We also predict that tuning EF
to zero by a gate voltage would not lead to qualitative change
in shape of the conductance spectra when the impurity is
atop the hexagon center; for impurity atop a site, the tunnel-
ing conductance would change from a dip to a peak via an
antiresonance.

The organization of the rest of the paper is as follows. In
Sec. II, we present the derivation of the tunneling current.
This is followed by Sec. III where we present our main re-
sults. Finally we conclude in Sec. IV.

II. COMPUTATION OF TUNNELING CURRENT

The experimental situation for STM measurement is sche-
matically represented in Fig. 1. The STM tip is placed atop
the impurity and the tunneling current I is measured as a
function of applied bias voltage V. The possible positions of
the impurity is shown in the right panel of Fig. 1. Such a
situation can be modeled by the well-known Anderson
Hamiltonian.16 Here we incorporate the low-energy Dirac
quasiparticles of graphene in this Hamiltonian which is given
by

H = HG + Hd + Ht + HGd + HGt + Hdt, �1�

HG = �
k

�s
	†�k���
vF��z�xkx + �yky� − EFI��s

	�k�� , �2�

Hd = �
s=↑,↓

dds
†ds + Un↑n↓, �3�
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Ht = �
�

� �
s=↑↓
t�t̃�s

† t̃�s + ��0t̃�↑
† t̃−�↓

† + H.c.�� , �4�

HGd = �
�=A,B

�
k

�V�
0�k��c�,s

	 �k��ds
† + H.c.� , �5�

Hdt = �
s=↑,↓;�

�W�
0t̃�sds

† + H.c.� , �6�

HGt = �
�=A,B;�

�
k

�U�;�
0 �k��c�,s

	 �k��t̃�s
† + H.c.� . �7�

Here HG is the Dirac Hamiltonian for the graphene electrons
which are described by the two-component annihilation op-
erator

�s
	�k�� = �cAs

	 �k��,cBs
	 �k��� �8�

belonging to the valley 	=K ,K� and spin s= ↑ , ↓ , I is the
identity matrix, � and � denote Pauli matrices in valley and
pseudospin spaces, vF is the Fermi velocity, and �k

	�	=K,K��s=↑↓�
d2k

�2��2 . Hd denotes the impurity-atom Hamil-
tonian with an on-site energy d and U is the strength of
on-site Hubbard interaction. Ht is the Hamiltonian for the
superconducting ��0�0� or metallic ��0=0� tip electrons
with on-site energy t�, where � signifies all quantum num-
bers �except spin� associated with the tip electrons. The op-
erators ds and t̃�s are the annihilation operators for the impu-
rity and the tip electrons. The Hamiltonians HGd, HGt, and
Hdt describe hopping between the graphene and the impurity
electrons, the graphene and the STM tip electrons, and the
impurity and the STM tip electrons, respectively. The corre-
sponding parameters V�

0�k��, U�;�
0 �k��, and W�

0 are taken to be
independent of valley and spin indices of graphene electrons
but may depend on their sublattice index or pseudospin. Note
that the tunneling terms �Eq. �5�� automatically take into ac-
count potential scattering; such terms are generated once the
impurity degree of freedom is integrated out unless there is
perfect particle-hole symmetry �EF=0�.

The tunneling current for the present model is given by

I�t� = e
dNt/dt� = ie
�H,Nt��/
 , �9�

where N=��st̃�s
† t̃�s is the number operator for the tip elec-

trons. These commutators receive contribution from Hdt and
HGt in Eqs. �6� and �7� and can be written as

I�t� =
e



��
��

�W�
0�G���2���t� − W�

0G���2���t��

+ �
k
�
��

�U�
0��k��G��

�1���t;k�� − U�
0�k��G��

�1���t;k��� ,

�10�

where we define the standard Keldysh Green’s functions G
and G as17

G��
�1���t;k�� = − i
t̃��

† �t����0;k��� ,

G��
�1���t;k�� = − i
��

†�t;k��t̃���0�� ,

G���2���t� = − i
t̃��
† �t�d��0�� ,

G���2���t� = − i
d�
†�t�t̃���0�� . �11�

These hybrid Green’s functions �Eq. �11�� obey the usual
Keldysh relations. For example, G���2�� and G���2�� can be ex-
pressed in terms of the time ordered �G���2�t�, antitime ordered
�G�,�

�2�t̄�, retarded �G�,�
�2�R�, and advanced �G�,�

�2�A� Keldysh
Green’s functions as17

G���2�t + G���2�t̄ = G���2�� + G���2��,

G���2�R − G���2�A = G���2�� − G���2��. �12�

Similar relations hold for G��
�1���t ;k�� and G��

�1���t ;k��.
Next, we expand the hybrid Green’s functions G��

�1���t ;k��,
G��

�1���t ;k��, G���2���t�, and G���2���t� in perturbation series.17 Af-
ter some straightforward algebra, one obtains, to first order in
perturbation theory,

G��
�1���k� = �

k�
�
����

U��
0 �k����g����;��

t G�,��
� �k�,k���

− g����;��
� G�,��

t̄ �k�,k���� + �
���

W��
0

� �g����;��
t G���

h� �k�� − g����;��
� G���

ht̄ �k��� ,

G��
�1���k�� = �

k�
�
����

U��
0��k����g��;����

� G��,�
t �k�,k���

− g��;����
t̄ G��,�

� �k�,k���� + �
����

W��
0�

� �g��;����
� G���

ht �k�� − g��;����
t̄ G��;�

h� �k��� ,

FIG. 1. �Color online� Schematic experimental setup with the
right panel showing two possible positions �atop hexagon center
and atop a B site� of the impurity. The numbers denote nearest-
neighbor A and B sublattice sites to the impurity. a1�2�=
+�−��3 /2x̂+3 /2ŷ �lattice spacing set to unity� are graphene lattice
vectors. The choice of coordinate center �0,0� are shown for each
case.
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G���2�� = �
k�

�
����

U�
0�k����g����;��

t G���
h� �k��� − g����;��

� G���
�ht̄� �k����

+ �
����

W��
0
� �g����;��

t G���
d� − g����;��

� G���
dt̄ � ,

G���2�� = �
k�

�
����

U��
0��k����g��;����

� G��,�
ht �k��� − g��;����

t̄ G�,��
h� �k����

+ �
����

W��
0�
� �g��;����

� G���
ht �k��� − g��;����

t̄ G���
h� �k���� ,

�13�

where all the Green’s functions appearing in Eq. �13� are at
the same time t which we have not written out explicitly for
clarity. In Eq. �13�, g��;����

� �t�=−i
t̃��
† �t�t̃�����0�� denotes the

Green’s function for the tip electrons which, in frequency
space, is given by

g��;����
� ��� = 2�if�t� − �t������������ − t�� , �14�

where f�x�=1 / �1+exp�x /kBT�� denotes the Fermi-Dirac dis-
tribution function at a temperature T, �t is the chemical po-
tential for the tip electrons, and kB is the Boltzmann constant.
Similar expressions can be obtained for gt and gt̄ using
Eq. �12�.17 G���

� �t ;k� ,k���=−i
���
† �t ;k�����0;k���� denotes the

Green’s function of the Dirac electrons in the presence of the
impurity. The retarded and advanced components of this
Green’s function which we shall need in subsequent analysis
can be written as

G���
R�A��k�,k��� = ������k� − k���G��0�R�A��k��

+ �
k1

�
k2

�
�1,�2

V0��k��V0�k���G��1

R�A��k�,k�1�

�G�1�2

dR�A��k�1,k�2�G�2��
R�A� �k�2,k��� , �15�

where again it is understood that all Green’s functions are at
a given time t and G���

dR�A��t�=−i
d�
†�t�d���0�� denotes the re-

tarded �advanced� Green’s function of the interacting impu-
rity electrons. In frequency space, this Green’s function is
given by

G���
dR�A���� =

����
� − d − Re��d���� − �+ �i Im��d����

,

�16�

where �d��� denotes the self-energy of the impurity in the
absence of the tip. �d receives contributions from both the
on-site Hubbard interaction U of the impurity electrons and
the coupling of the impurity to the Dirac electrons. Note that
we have neglected the effect of the STM tip while computing
G���

R�A��t ;k� ,k��� which is justified as long as we restrict our-

selves to linear-response theory. In Eq. �15�, G��0�R�A��t ;k�� de-
notes the single-particle Green’s function for the graphene
electrons in the absence of the impurity and the STM tip and
is given, in frequency space, by

G��0�R�A���,k�� =
�� + EF�I − 
vF��z�xkx + �yky�

�� + EF�2 − 
2vF
2 �k��2 − �+ �i�

. �17�

Finally, the Green’s function G���
h� �t ;k��=−i
d�

†�t�����0;k���
used in Eq. �13� is a hybrid Green’s function whose retarded
and advanced components are given, within first-order per-
turbation theory, by

G���
hR�A��t;k�� = �

�1

V0�k��G��1

�0�R�A��0;k��G�1��
dR�A��t� . �18�

Next we follow Ref. 14 to substitute Eqs. �13� and �14� in
Eq. �10� and approximate the coupling functions to be inde-
pendent of momentum: U0�k��	U0, W�

0	W0, and V0�k��
	V0. Such an approximation is justified as long we restrict
ourselves to low applied voltages. With this approximation,
after some algebra involving Eqs. �10�–�18�, one obtains the
expression of the current

I = I0�
−�

�

d��f�� − eV� − f�����t�� − eV���G���� �U0�2

+
�B����2

Im �d���
�q����2 − 1 + 2 Re�q��������

�1 + �2�����1 + �2� � , �19�

where I0=2e�1+�2� /h, �G�� and �t�� are the graphene and
STM tip electron DOS, respectively, �= �UB

0 � / �UA
0 �

= �VB
0 � / �VA

0 � is the ratio of coupling of the impurity to the
electrons in B and A sites of graphene with UA

0 =U0 and VA
0

=V0, and �d�� is the impurity advanced self-energy in the
absence of the tip. Here B��=V0U0I2�� and q�� and ���
are given by

q�� = �W0/U0 + V0I1���/�V0I2��� ,

��� =
 − d − Re �d��

Im �d��
, �20�

where we have neglected the energy dependence of the
coupling functions assuming small applied voltages.
In Eq. �20�, I1��= �1+�2��kTr�Re�G��0�R� ,k��, I2��= �1
+�2��kTr�Im�G��0�R� ,k��, and Tr denotes trace over Pauli
matrices in pseudospin, valley and spin spaces. Substituting
Eq. �17� in Eq. �20�, we find7,14

I1�� = − 4�1 + �2�� + EF�ln�1 − �2/� + EF�2�/�2,

I2�� = 4�1 + �2��� + EF���� −  − EF�/�2, �21�

where � is the ultraviolet momentum cutoff and � is the
Heaviside step function. Usually, in graphene, � is taken to
be the energy at which the graphene bands start bending
rendering the low-energy Dirac theory inapplicable and can
be estimated to be 1–2 eV.6

Equations �19�–�21� constitute the central results of this
section and yields the tunneling current through the STM tip
within linear-response theory. We are going to analyze these
equations in the subsequent sections.
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III. RESULTS

In this section, we are going to analyze the tunneling con-
ductance �G�V�=dI /dV� as measured by the STM tip. First
we consider the case of a superconducting tip in the absence
of any impurity. In this case, the contribution to the conduc-
tance comes from the first term of Eq. �19�. For s-wave su-
perconducting tips, one finds that the tunneling conductance
�G�V�=dI /dV� for EF�0 and at T=0 is given by �with r
=EF /�0, p=−eV /�0�

G = G0�Nt�p��r� + �
p

sgn�z − p + r�Nt�z�dz� , �22�

dG

dV
=

eG0

�0
�Nt�p� − Nt��p��r� − 2��p − r�Nt�p − r�� ,

�23�

where G0=8�2e2�U0�2�1+�2��0t�0�0 /h, �G=�0�r− p�, �t�r�
=�0tNt�r�, Nt�x�= �x� /�x2−1���x�−1�, sgn�x� denotes the
signum function, �0=6�3 / �2�
2vF

2� �Ref. 1� and �0t is the
constant DOS of the metallic tip. For graphene with EF=r
=0, dG /dV�sgn�V�Nt�−V�, i.e., the tip DOS is given by the
derivative of the tunneling conductance. For large EF away
from the Dirac point, the first term of G becomes large and
reflects the tip DOS. In between these extremes, when EF
�eV, neither G nor dG /dV reflects the DOS. In this region,
the signature of the Dirac point appears through a cusp �dis-
continuity� in G�dG /dV� at eV=−EF−�0 arising from the
contribution of the second �third� term in Eq. �22� �Eq. �23��.
These features, shown in Fig. 2, distinguish such graphene
STM spectra with their conventional counterparts.15

Next, we turn to the case of impurity-doped graphene and
consider a metallic tip with constant DOS. The contribution
to the tunneling conductance from the impurity �after sub-
tracting the graphene background� at T=0 �Eq. �21�� is

Gimp = G0�
�B�V��2

Im �d�V�
�q�V��2 − 1 + 2 Re�q�V����V�

��1 + �2�V��
, �24�

where G0�=2e2�0t� /h. Such tunneling conductances are
known to have peak/antiresonance/dip feature at zero bias for
�q��1 / �1 /�1.13 In conventional metals or earlier STM
studies in graphene,10 U0 has been taken to be a fixed param-
eter independent of the position of the impurity. However, as
we show here, the situation in graphene necessitates a closer
attention. To this end, we note that U0 is proportional to the
probability amplitude of the Dirac quasiparticles in graphene
to hop to the tip and its strength can be estimated using
the well-known Bardeen tunneling formula:18 U0

��d2r���
†�z��z�G�r� ,z�−�G

† �r� ,z��z���z����G�r�0 ,z0�,
where the last similarity is obtained by a careful evaluation
of the surface integral �d2r over a surface between the
graphene and the tip parallel to the graphene sheet,19 �r�0 ,z0�
is the coordinate of the tip center, ���z� is tip electron wave
function, and the wave function of the graphene electrons
�G�r� ,z� around K�K�� valley, can be written, within tight-
binding approximation, as20

�G�r�,z� =
1

�N
�
Ri

A

ei��K� �K� ��+�k�·R� i
A����r� − R� i

A�

+ e+�−�i�k��r� − R� i
B��f�z� . �25�

Here �k=arctan�ky /kx�, �k� is the Fermi wave vector as mea-
sured from the Dirac points with ��k��� �K� �K� ��� for all EF,
��r�� are localized pz orbital wave functions, N is a normal-
ization constant, f�z� is a decaying function of z with decay
length set by work function of graphene, and Ri

A�B�=nâ1
+mâ2�â2− ŷ� with integers n and m denote coordinates of the
graphene lattice sites �Fig. 1�.20 When the impurity and the
STM tip is atop the center of the hexagon, pseudospin sym-
metry necessitates ��r�0−R� i

A,B� to be identical for all neigh-
boring A and B sublattice points 1–6 surrounding the impu-
rity �Fig. 1�. Consequently, the sum over lattice vectors Ri

A in
Eq. �25� reduces to a sum over the phase factors
exp�i��K� �K� ��+�k� ·R� i

A�� for these lattice points. It is easy to
check that this sum vanishes for both Dirac points �when
��k��=0�. Thus the only contribution to �G�r�0 ,z0� comes from
the second and further neighbor sites for which the amplitude
of localized wave functions ��r�0−R� i

A/B� are small. For finite
EF, ��k��0� there is a finite but small contribution
�O���k�� / �K� ��� to �G�r�0 ,z0� from the nearest-neighbor sites.
Thus �G�r�0 ,z0� and hence U0 is drastically reduced when the
impurity is atop the hexagon center. In this case, we expect
U0�W0 and hence �q��1 �Eq. �20�� leading to a peaked
spectra for all EF. In contrast, for the impurity atom atop a
site, there is no such symmetry induced cancellation and
�G�r�0 ,z0� receives maximal contribution from the nearest
graphene site directly below the tip. Thus we expect �U0�
� �W0� �since it is easier for the tip electrons to tunnel to

FIG. 2. �Color online� Plot of the tunneling conductance G and
its derivative dG /dV as a function of the applied bias voltage
eV /�0=−p for r=0,2 ,6 �red solid, blue dashed, and black dotted
lines�, respectively. See text for details.
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delocalized graphene band than to a localized impurity level�
leading to q� I1 / I2�−ln�1−�2 / �eV+EF�2� /�. For large
�eV+EF� and impurity atop a site, q 1 leading to a dip or an
antiresonance in Gimp which is qualitatively distinct from the
peaked spectra for impurity atop the hexagon center. As EF
→0, q diverges logarithmically for small eV. However, it
can be shown that in this regime � shows a stronger linear
divergence for eV�d which suppresses Gimp. At eV=d, the
divergence of � also becomes logarithmic and we expect a
peak of Gimp. Note that these effects are independent of �d
and hence of the precise nature of the impurity. Such an
impurity position-dependent peak/dip structure of Gimp has
been observed for magnetic impurities in Ref. 9 for EF
�eV.

To demonstrate this feature, we restrict ourselves to im-
purities with small Hubbard U and compute the self-energy
of the impurity electrons within a mean-field theory where
Un�n�̄=U
n��n�̄ leading to spin-dependent on-site impurity
energy �=d+U
n�̄�.7 Using Eqs. �1� and �5�, one then ob-
tains the mean-field advanced impurity Green’s function
G�imp���= ��−�−�d����−1 where the impurity self-energy is
given by �d���= �V0�2�I1+ iI2� and mean-field self-
consistency condition demands n�=�d� /� Im G�imp���. Fol-
lowing Ref. 7, we solve these equations to get ���, and
Im �d�� which can be substituted in Eq. �24� to obtain Gimp.
We note, from Eqs. �20� and �24�, that Gimp /G0� depends on
the ratios EF /�, V0 /�, and W0 /U0 which cannot be quanti-
tatively determined from the Dirac-Anderson model. We
therefore treat them as parameters of the theory1,7 and com-
pute Gimp for their representative values as shown in Fig. 3.
In accordance with earlier discussions, we find that for large
EF /�=0.3, Gimp has qualitatively different features; for the
impurity at the center of the hexagon, it shows a peak �left
panel� while for that atop a site �right panel�, it shows a dip.
The change in Gimp from a dip to a peak via an antiresonance
as a function of EF /� when the impurity is atop a site can be
seen from right panel of Fig. 3. In contrast, the left panel
always shows peak spectra.

IV. CONCLUSION

In conclusion, we have shown that the tunneling conduc-
tance spectra of both doped and undoped graphene have un-
conventional features not discussed in earlier studies.10 In
particular, the STM spectra of doped graphene depend quali-
tatively on the position of the impurity in the graphene ma-
trix. This feature is demonstrated to be a direct consequence
of pseudopsin symmetry and Dirac nature of graphene
quasiparticles.

Further experimental verification of our work would in-
volve measuring tunneling conductance of doped and un-
doped graphene by varying EF. For undoped graphene with
EF=0, we propose to measure the tunneling conductance
spectra using a superconducting tip and verify that dG /dV
��t sgn�V�. For small EF�0, where it is possible to access
the regime eV�EF in experiments, we predict a cusp �dis-
continuity� in G�dG /dV� at eV=−EF−�0 as a signature of
the Dirac point. The variation in the shape of the spectra of
impurity-doped graphene with impurity atop a site may also
be experimentally studied.

We also note that the theory of tunneling conductance
derived here should also be applicable to the impurity-doped
Dirac electrons on the surface of strong topological insula-
tors with a single Dirac cone.21 In this case, we expect to find
that the STM spectra should change from a dip to a peak
through an antiresonance as the Fermi energy is tuned to-
ward the Dirac point. This behavior is qualitatively similar to
that shown in the right panel of Fig. 3. However, such a
controlled tuning of Fermi energy of topological insulators
seems to be experimentally more difficult than graphene.

Note added. Recently, we came to know of Ref. 22 with
related results.
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